skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vergis, Meghna R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nikel, Pablo Ivan (Ed.)
    ABSTRACT The bacteriumAcinetobacter baylyiis a model organism known for its extreme natural competence and metabolic versatility. It is capable of taking up environmental DNA at a high rate across all growth phases. The type strain ADP1 was created by random mutagenesis of a precursor strain, BD4, to prevent it from forming cell chains in culture. ADP1 has since been distributed between research groups over several decades and acquired subsequent mutations during this time. In this study, we compare the genome sequences ofA. baylyiBD4 and its modern descendants to identify and understand the effects of mutations acquired and engineered during its domestication. We demonstrate that the ADP1 variants in use today differ in their competence, growth on different carbon sources, and autoaggregation. In addition, we link the global carbon storage regulator CsrA and a transposon insertion that removes its C-terminal domain specifically to changes in both overall competence and an almost complete loss of competence during the stationary phase. Reconstructing the history of ADP1 and the diversity that has evolved in the variants currently in use improves our understanding of the desirable properties of this experimentally and industrially important bacterium and suggests ways that its reliability can be improved through further genome engineering.IMPORTANCEAcinetobacter baylyiADP1 is a bacterial chassis of interest to microbiologists in academia and industry due to its extreme natural competence and wide metabolic range. Its ability to take up DNA from its environment makes it straightforward to efficiently edit its chromosome. We identify and characterize mutations that have been passed down to modern strains of ADP1 from the initial work in the 1960s, as well as subsequent mutations and genome edits separating strains in use by different research groups today. These mutations, including one in a global regulator (CsrA), have significant phenotypic consequences that have affected the reproducibility and consistency of experiments reported in the literature. We link a mutation in this global regulator to unexpected changes in natural competence. We also show that domesticatedA. baylyistrains have impaired growth on a variety of carbon sources. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026